

1.25 Gb/s RoHS Compliant Long-Wavelength Pluggable SFP Transceiver

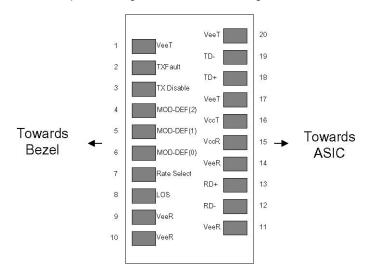
APS31123CDL2

Product Features

- Up to 1.25Gb/s dual data links
- Hot-pluggable SFP footprint
- 1310nm FP laser transmitter
- Duplex LC connector
- Up to 2km on 50/125µm MMF
- Metal enclosure for lower EMI
- Single +3.3V power supply
- Low power dissipation <600mW
- Commercial operating temperature range: 0°C to +70°C

Applications

- 1.25Gb/s 1000Base-SX Ethernet
- 1.06 Gb/s Fibre Channel


General

ATOP's APS31123CDL2 Small Form Factor Pluggable (SFP) transceivers are compatible with the Small Form Factor Pluggable Multi-Sourcing Agreement (MSA). They simultaneously comply with Gigabit Ethernet as specified in IEEE STD 802.3 and 1x Fibre Channel as defined in FC-PI-2 Rev. 10.0 .They are RoHS compliant and lead-free.

I.	Pin Descriptions		
Pin	Symbol	Name/Description	Ref.
1	VeeT	Transmitter Ground (Common with Receiver Ground)	1
2	TX Fault	Transmitter Fault.	
3	TX Disable	Transmitter Disable. Laser output disabled on high or open.	2
4	MOD_DEF(2)	Module Definition 2. Data line for Serial ID.	3
5	MOD_DEF(1)	Module Definition 1. Clock line for Serial ID.	3
6	MOD_DEF(0)	Module Definition 0. Grounded within the module.	3
7	Rate Select	No connection required	
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation.	4
9	VeeR	Receiver Ground (Common with Transmitter Ground)	1
10	VeeR	Receiver Ground (Common with Transmitter Ground)	1
11	VeeR	Receiver Ground (Common with Transmitter Ground)	1
12	RD-	Receiver Inverted DATA out. AC Coupled	
13	RD+	Receiver Non-inverted DATA out. AC Coupled	
14	VeeR	Receiver Ground (Common with Transmitter Ground)	1
15	VccR	Receiver Power Supply	
16	VccT	Transmitter Power Supply	
17	VeeT	Transmitter Ground (Common with Receiver Ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	VeeT	Transmitter Ground (Common with Receiver Ground)	1

Notes:

- 1. Circuit ground is internally isolated from chassis ground.
- 2. Laser output disabled on TX Disable >2.0V or open, enabled on TX Disable<0.8V.
- 3. Should be pulled up with 4.7k 10kohms on host board to a voltage between 2.0V and 3.6V. MOD_DEF(0) pulls line low to indicate module is plugged in.
- 4. LOS is LVTTL output. Should be pulled up with 4.7k 10kohms on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

Pinout of Connector Block on Host Board

II. Absolute Maximum Ratings							
Parameter	Symbol	Min	Тур	Max	Unit	Ref.	
Maximum Supply Voltage	Vcc	-0.5		+4.0	V		
Storage Temperature	TS	-40		+100	°C		
Case Operating Temperature	TOP	0		+70	°C		
Relative Humidity	RH	0		85	%	1	

III. Electrical Characteristics	s (TOP=25	°C, Vcc=3.3	Volts)			
Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Supply Voltage	Vcc	3.00		3.60	V	
Supply Current	Icc		160	300	mA	
Transmitter						
Input differential impedance	Rin		100		Ω	2
Single ended data input swing	Vin, pp	250		1200	mV	
Transmit Disable Voltage	VD	Vcc - 1.3		Vcc	V	
Transmit Enable Voltage	VEN	Vee		Vee+ 0.8	٧	
Transmit Disable Assert Time				10	us	
Receiver						
Single ended data output swing	Vout, pp	300	400	800	mV	3
Data output rise time	tr			300	ps	4
Data output fall time	tf			300	ps	4
LOS Fault	VLOS fault	Vcc - 0.5		VccHOST	V	5
LOS Normal	VLOS norm	Vee		Vee+0.5	V	5
Deterministic Jitter Contribution	RXΔDJ			80	ps	6
Total Jitter Contribution	RXΔTJ			122.4	ps	

Notes:

- 1. Non condensing.
- AC coupled. 2.
- Into 100 ohm differential termination. 3.
- 4.
- 5.
- 20 80 %
 LOS is LVTTL. Logic 0 indicates normal operation; logic 1 indicates no signal detected.

 Measured with DJ-free data input signal. In actual application, output DJ will be the sum of input DJ and ΔDJ.

IV. Optical Characteristics (TOP=25°C, Vcc=	3.3 Volts)					
Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Transmitter						
Output Opt. Power	PO	-15	-	-8	dBm	1
Optical Wavelength	λ	1275	1310	1350	nm	
Spectral Width	σ	-	-	3	nm	
Optical Rise/Fall Time	tr/tf	-	170	260	ps	2
Deterministic Jitter Contribution	TXΔDJ	-	-	0.07	UI	3
Total Jitter Contribution	ΤΧΔΤJ	-	-	0.007	UI	
Optical Extinction Ratio	ER	9	-	-	dB	
Receiver						
Average Rx Sensitivity	RSENS	-	-	-24	dBm	4
Maximum Received Power	RXMAX	0	-	-	dBm	
Optical Center Wavelength	λС	1270	-	1600	nm	
LOS De-Assert	LOSD	-	-	-25	dBm	
LOS Assert	LOSA	-36	-	-	dBm	
LOS Hysteresis		0.5	-	-	dB	

Notes:

- Class 1 Laser Safety, Tested with 50/125 μ m MM fiber. Unfiltered, 20-80%. Measured with DJ-free data input signal .In actual application, output DJ will be the sum of input DJ and Δ DJ. Measured with PRBS 2^7 -1 at 10^{-12} BER . 3.

V. General Specifications						
Parameter	Symbol	Min	Тур	Max	Units	Ref.
Data Rate	BR	-	-	1250	Mb/sec	1
Bit Error Rate	BER	-	-	-12 10		2
Max. Supported Link Length on 50/125µm MMF @ Gigabit Ethernet	LMAX	-	-	2	km	3,4

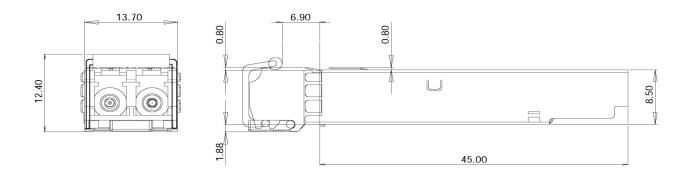
Notes:

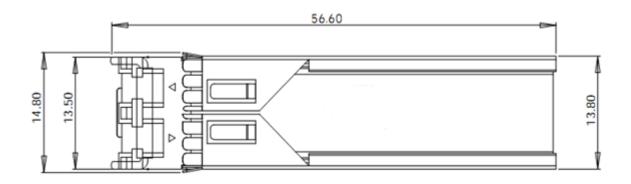
- Gigabit Ethernet and 1x Fibre Channel compliant.

 Tested with a PRBS 2⁷-1 data pattern.

 Dispersion limited per FC-PI-2 Rev. 10.

- Attenuation of 0.55 dB/km is used for the link length calculations. Please refer to the Optical Specifications in Table IV to calculate a more accurate link budget based on specific conditions in your application.

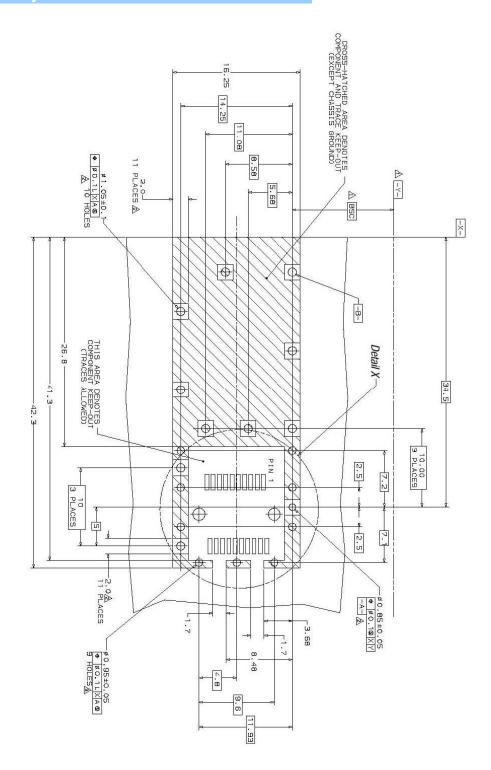

VI. Environmental Specifications

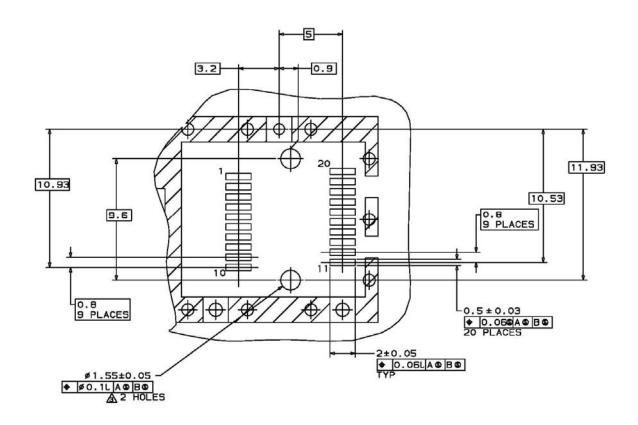

ATOP 1310nm Commercial Temperature SFP transceivers have an operating temperature range from 0° C to +70°C case temperature.

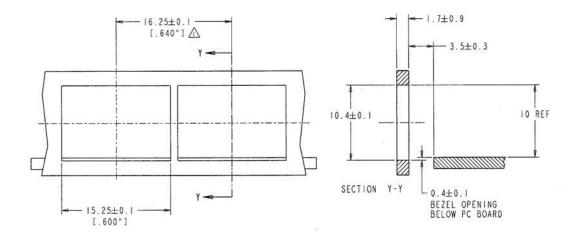
Parameter	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	Тор	0		+70	°C	
Storage Temperature	Tsto	-40		+100	°C	

VII. Mechanical Specifications

ATOP's Small Form Factor Pluggable (SFP) transceivers are compatible with the dimensions defined by the SFP Multi-Sourcing Agreement (MSA).




APS31123CDL2


Datum and Basic Dimension Established by Customer

∑Rads and Vias are Chassis Ground, 11 Places

⚠ Through Holes are Unplated

NOTES:

 $\stackrel{\textstyle \wedge}{\bigtriangleup}$ MINIMUM PITCH ILLUSTRATED, ENGLISH DIMENSIONS ARE FOR REFERENCE ONLY

2. NOT RECOMMENDED FOR PCI EXPANSION CARD APPLICATIONS

X. For More Information

ATOP Technology co., Itd

5A of NO.C building of Tongfang information Habour, langshan Rd, High Tech Park, Nanshan District, Shenzhen, China.

Tel: +86-755-86674946 Fax: +86-755-86296723

Email: sales@atoptechnology.com
Web: www.atoptechnology.com